The Army and Amphibious Warfare- Repost

Here’s a repost of one of the earlier works on the blog, but that might seem fresh to newer readers.

When you mention the words “amphibious warfare” most people think immediately of the US Marines, and rightly so. But during WWII, the Army invested huge resources into the ability to land on a hostile shore and conduct operations.

There are two general types of amphibious operations: ship-to-shore and shore-to-shore. Ship to shore operations are those in which the landing force is transported to the objective in large, ocean going vessels, then landed via small craft onto the shore. Shore to shore operations take place over relatively short distances, and generally the troops are carried in smaller craft, rather than large transports. Obviously, the anticipated objectives will dictate which approach is taken.

In the late 1930s, with war clouds clearly on the horizon, both the Army and the Marines came to the conclusion that they would need to develop a serious amphibious capability, but they reached different conclusions because of very different assumptions about what type  of war they would be fighting.

For 20 years, the Navy had forseen war with Japan in the Pacific. And the cornerstone of the Navy’s strategy to defeat Japan was to defeat the Japanese fleet in a battle, likely somewhere near the Philipines. Since it would be impractical for the fleet to steam all the way from San Diego or Pearl Harbor and fight in those waters, the need for advanced bases was clear. And the Marines understood that as a consequence of the Washington Naval Treaty of 1922, any islands that could serve as an advance base would almost certainly be held by the Japanese. That meant the Marines had to be ready to travel the huge distances of the Pacific, land on remote islands, and seize relatively small objectives. For the Marines, this was a raison de etre.

The Army faced a different challenge. The Army had no desire to get into the amphibious warfare business. But watching the rise of Nazi German power, the Army leadership was convinced that sooner or later, they’d have to go fight in Western Europe again. And, unlike 1918, they weren’t at all sure the French ports would be available to land the huge armies planned. After the fall of France in June of 1940, the cold realization came that just to get  the Army to the fight would mean sooner or later, landing somewhere in Western Europe, under the guns of the enemy. And not only would the Army have to land there, they would have to build up their forces and simultaneously supply them over the beaches until a suitable port could be seized. Fortunately for the Army, England was still available as an advance base.

The Army didn’t completely ignore the ship to shore model of amphibious warfare, mostly because they couldn’t. When it became apparent that no cross-Channel operation to invade Europe would be possible in 1942 (mostly because of a lack of landing craft) President Roosevelt made the decision that a front in the Atlantic theater would be opened in North Africa. A combined British and American force would be landed in the French occupied territories of North Africa, then drive east to engage the German forces in  Tunisia. Due to the distances involved, this could only be a ship to shore movement. Many forces sailed from England, but a significant portion sailed all the way from ports on the East Coast of the US. Even against only fitful French and German resistance, the invasion fleet lost five large transports. One of the lessons the Army learned was that transports waiting to discharge their troops and cargoes were extremely vulnerable. In response, the Army wanted to make sure as many ships as possible had the ability to beach themselves to unload, minimizing the reliance on small craft such as the Higgins boat, LCVP, and the LCM.

LCM(3) (Landing Craft Mechanized Model 3)
LCM(3) (Landing Craft Mechanized Model 3)
Higgins Boat (Landing Craft Personnel Light)
Higgins Boat (Landing Craft Personnel Light)
LCVP (Landing Craft Vehicle Personnel)
LCVP (Landing Craft Vehicle Personnel)

These craft were carried near the objective by transports, and lowered over the side by booms or davits. That took time, time during which the transports, only 5-10 miles offshore, were vulnerable to submarines, airplanes and even coastal artillery.  While they were fairly good for getting the first units of lightly armed troops ashore, they were less efficient at getting ashore the huge numbers of follow-on troops needed, and importantly, the massive numbers of vehicles the troops would need to break out from any beachhead. Further, they just weren’t capable of bringing ashore the cargoes of supplies, fuel and ammunition the troops would need.  Something bigger was needed. And the first of these bigger craft was known as the LCT, or Landing Craft Tank. An LCM3 could carry one tank, barely. An LCT was a much bigger craft and could carry from 3 to 5 tanks. Five was an optimum number, as that was the number of tanks in a platoon, and keeping tactical units together on a landing greatly assisted in the assualt. As you can see from the picture, the LCT was essentially a self-propelled barge with a bow-ramp.

2lctmk5pageThe LCT could easily sail from England to France, or from Mediterranean ports in North Africa to Sicily and Italy. And while it could carry real numbers of tanks, something even better was in the works- the Landing Ship Tank, or LST. Early in the war, espcially as the Allies were first gearing up  for the invasion of North Africa, the Army (and especially the British) realized they had no way of shipping tanks overseas and landing them across beaches in any numbers. The LCT couldn’t handle the voyage, and loading LCMs over the side of a transport was problematic in anything but a flat calm. Worse, tanks kept getting heavier and heavier, faster than the booms on transport ships could grow to handle them. The idea arose of converting vessels originally built to carry rail cars from Florida to Panama as tank carriers. But while they could drive the tanks on at the embarkation point, the problem of discharging them remained. To unload them, the Army would need to seize a port. Indeed, this limitation was precisley why Casablanca was a target of the invasion. Enter the British. They had built a series of very shallow draft tankers to serve the waters around Venezuala. The reasoned that the design could quickly be adapted to build a large vessel that could safely beach itself, unload tanks held in what had formerly been the holds via a ramp in the bow, and then retract itself from the beach. Unlike an LCT, the LST might be ungainly and slow, but it was a real seagoing vessel.

LST (Landing Ship Tank)
LST (Landing Ship Tank)

While the LST was very valuable in bringing tanks, up to 20 at a time, it turns out the real value was in trucks. The Army in WWII was by far the most mechanized and motorized army in the world. And that meant trucks. Lots of trucks- to move people, supplies, tow guns, you name it. And the LST could carry a lot of trucks, already loaded, both on its tank deck, and on the topsides. And unlike the hassle of unloading a regular transport, all they had to do was drive down a ramp. After making an initial assault, as soon as an LST had discharged its tanks, it would turn around, go back to England (or where ever) and load up on trucks to build up the forces on the beachhead. To say the LST was a success would be a bit of an understatement. The US built roughly 1100 of them during the war for our Navy and the British.

While the LST was great for carrying tanks and trucks, it didn’t do so well at carrying people. One thing the Army really wanted was a small ship that could carry a rifle company from England and land them on the shores of France, non-stop and as a unit. The trick was getting the size just right. It had to be small enough to be built in large numbers, but big enough to cross the Atlantic on its own. It wouldn’t be expected to carry troops across the Atlantic. Those would come across on troopships. But any vessel large enough to do the job would be too large to carry aboard a transport. Pretty soon, the Navy designed and built the Landing Craft Infantry, or LCI. This was a vessel designed almost entirely with the invasion of Normandy in mind. It carried about 200 troops, roughly a reinforced rifle company, for up to 48 hours, which is about the time it took to load and transport them from ports in the Southwest of England and discharge them over the beaches of Normandy.

LCI (Landing Craft Infantry)
LCI (Landing Craft Infantry)

The Army had one other great tool for bringing supplies across the beach. In the days before the LST was available, the only method of getting trucks ashore across the beach was to winch them over the side of  a transport into an LCM. Someone at GM had the bright idea of doing away with the LCM part, and making the truck amphibious. That way, the truck could swim ashore, then drive inland to the supply dumps.  The result was basically a boat hull grafted onto a 2-1/2 ton truck, known as the DUKW, and commonly called a “duck.” Thousands of DUKWs, almost all manned by African American soldiers, brought wave after wave of critical supplies ashore across the beaches of Normandy and at other beaches the Army invaded. Unlike most landing craft, these were bought by, and operated by the Army, not the Navy.

DUKW Amphibious 2-1/2 ton truck
DUKW Amphibious 2-1/2 ton truck

Finally, in the Pacific, when you speak of amphibious warfare, again, you rightly think of the Marines. But in fact, the Army had a huge presence there as well. Indeed, it was always a larger prescence than the Marines. The Army made over 100 amphibious assualts in the Pacific theater, many in the Southwest Pacific in and around New Guinea. In conjunction with the US Seventh Fleet, MacArthur’s forces in the Southwest Pacific became masters at the art of amphibious warfare, striking where the Japanese least expected them, and routinely conducting sweeping flanking movements that left Japanese garrisons cut off and useless. Dan Barbey, the Commander of 7th Fleet became known as “Uncle Dan The Amphibious Man.” All this with a fleet mostly composed of tiny LCTs, a few LSTs and LCIs.

The Army also fought alongside the Marine Corps in some of their most storied battles, such as the invasions of Saipan and Okinawa. Indeed, if the atomic bomb attacks had not lead to the early surrender of Japan, the invasion of the home islands would have been mostly  an Army affair. Largely as a result of the Army’s preocupation with the European theater, these magnificent efforts have received little attention from the public at large.

After WWII, the Army’s focus again turned to Europe and the Cold War. For several reasons, including the vulnerability of shipping to nuclear weapons, amphibious operations fell out of favor with the Army. The Marines of course, continued to maintain that unique capabilty. Currently, the Army has no capability to conduct a landing against opposition. Current doctrine does still provide for limited ability to sustain forces by what is known as LOTS or “Logistics Over The Shore” and for the rapid deployment of troop units to hot spots via Afloat Prepositioning Squadrons. Basically, sets of unit equipment are mainained aboard large ships just days sailing from their possible objectives. If needed, they can sail to a friendly port or harbor, and unload their cargoes to meet up with troops flown in by either commercial aircraft or military transport planes. Alternatively, they can serve as a follow-on force to reinforce a beach seized by Marine amphibious assault.

S-Tank Weapons Trials

That’s S-Tank, not “stank.”

The Swedish Stridsvagn 103 was a very unique design. When you think of the classic tank, you think of an armored hull on tracks, and a turret mounting the main gun.

The S103 instead dispensed with the turret, and fixed an auto-loading 105mm main gun to the hull. The gun was aimed by the driver/gunner by pivoting the tracks, and elevated or depressed via the hydraulic suspension system. This provided a relatively low profile vehicle. The drawback was that it could not fire accurately on the move, but since the Swedes saw its use as primarily defensive, that was not a terrible shortcoming to them.

While the design stressed avoiding being hit, attention was also paid to mitigating the effects of the vehicle being hit. And did they ever shoot the heck out of some prototypes to test it.

[youtube https://www.youtube.com/watch?v=MiWCpIJ5dBw]

Be sure to hit the “cc” button for closed captions.

The S103 was developed in the early 1960s and entered into service in the late 1960s, with production ending in 1971 after 290 had been delivered.

Not content merely to have one weird major design feature, the S103 also had a very unique powerplant. A base diesel powerplant was used for slow movement and for aiming the gun. For higher speed operations, a gas turbine was also installed to boost power.

Retired in 1997, the S103 was replaced by a modified German built Leopard 2A5 known as the S122.

Tank Battles

I’m feeling poorly today, so here a “best of..” post from way back in the very early days of the blog.

I wrote earlier about bringing enough gun to the fight, but not too much. A prime example of this was the M-1 Abrams tank.

When this tank debuted, people were aghast at the cost. What they didn’t realize was it was acutally the result of an extreme cost cutting program. For 20 years, the Army had been cooperating with Germany to develop a sucessor to the M-60 series of tanks, but each iteration had become too complex and too costly. The Army finally decided that they would develop a tank using technology shared with the Germans rather than develop a tank to be used by both countries.

One of the sticking points was the main gun. The standard US tank gun was the 105mm M68. The Army thought this was sufficient to defeat current and projected Soviet armor (and were pretty much right).

The Germans had developed the excellent 120mm smoothbore, and wanted both countries tanks to use it. Our Army resisted for a couple of reasons. The biggest was cost. The new gun would have to be license produced here, with associated setup costs. Even more expensive would be providing stocks of ammunition for the gun. The Army had a huge stockpile of 105mm ammunition already. Buying an entirely new stockpile in the tight budgets of the 1970s wasn’t an attractive option.

In the end, the 105mm won-sort of. The decision was to place the M-1 into production with the 105mm, but make provision to add the 120mm in the future. As it turned out, for various reasons, this was a lot harder than anyone expected. Still, partly as a sop to our German allies, and partly over concern about the ability of the 105mm to defeat future Soviet armor, the 120mm was adopted for the M1A1 that entered service in 1988.

One disadvantage of the 120mm was a reduced ammo load. An M-1 with the 105mm carries 55 main gun rounds. An M-1A1 carries 40. As it turns out, however, few tanks will shoot their entire basic load in a single battle. In fact, not a single tank in Desert Storm fired its entire basic load.

Tankers, ever wonder why the coax on your tank has that massive 4000 round load? Because that’s where the designers originally wanted to put the 25mm M242. The only reason it didn’t make it into the final design was cost. Leaving the 25mm out saved about $100,000 just for the gun, and made the fire-control system simpler, and hence cheaper. 

The Bradley IFV

We love posting YouTube videos. Mostly because it is easier than writing, but also because the truth about a picture being worth a thousand words.

By far the funnest, and most rewarding job I had in the Army was as a Bradley Commander. While life wasn’t exactly like the video (somehow, the videos don’t spend a lot of time showing Brads on the washrack in the winter…), it had its moments. I had a couple pleasant flashbacks to fun on the range and out in the boonies.

[youtube=http://www.youtube.com/watch?v=rhQnvrCkSHM]

Here’s a little more “Boom” for you.

It’s a mashup of some footage from Iraq. Most of this looks to be from 2004 or early 2005. There’s some small arms, Bradleys, TOWs, Javelins, AT-4s and 500lb bombs. Interestingly, there’s a brief bit of Blackwater MD530 helicopters.

[youtube=http://www.youtube.com/watch?v=4gHR2XNZcqk]

H/T: Military Videos.

Bob Gates and the future Army.

Secretary of Defense Robert Gates came out last month with his proposed cuts in various acquisition programs throughout the DoD. The biggest impact this had on the Army was cutting the vehicle procurement portion of the Army’s Future Combat System (FCS) and moving to put most of the networking portion of it on the back burner.

The FCS program was originally designed with two major goals in mind:

First,  to both bring all of the army’s combat brigades into network-centric warfare, where using networks to link all combat elements would speed the flow of information, enhance the mental agility of units, reduce the fog of war, and allow our units to out think and outfight enemies large and small.

The second goal was to replace the Army’s legacy fleet of heavy armored vehicles, such as the M1 Abrams, the M2 Bradley and the M109 howitzer, with fleets of much lighter vehicles that would be easier to transport to the theater of operations, and more agile on the battlefield. An overriding goal of this part of the program was to use a single common set of components for all the vehicles in the fleet.

There are a couple problems with this holistic approach to re-equipping the Army. One, it is technologically very ambitious. Any part of the program that lags behind the anticipated timeline causes almost the whole program to be delayed. And in a program like this, time isn’t just money. It’s a LOT of money.  Second, when the FCS program was started, the Army had one vision of what future missions would likely look like. The primary outlook was one of short duration operations against nation/state actors such as Iraq. To say Desert Storm was the model they were working from would be an oversimplification, but it certainly had a large influence. But events since then have shown some of the limitations of that outlook. The vulnerability of lighter armored vehicles to IED attack took the Army somewhat by surprise. Not totally, mind you, but somewhat. In a war of maneuver against a state level enemy, you might expect to lose some forces to mines and other demolitions, but maneuver would mostly allow you to avoid mines, and your agility on the battlefield would prevent the enemy from having enough advance notice of your movements to emplace very many ambushes. That obviously isn’t the case in a counter-insurgency such as Iraq, and to a lesser degree, Afghanistan.  When you have to drive through the same neighborhoods on a regular basis, even a fairly dim enemy can figure out where to put mines and IEDs. And given that the FCS goal was for no vehicle heavier than 27 tons,  there was no way to provide enough protection against any but the smallest mines and IEDs.

As a means of testing this concept of a happy middle ground between the heavy Abrams/Bradley force, and light infantry/artillery team, the Army conceived the Interim Brigade Combat Teams.  These are better known as Stryker Brigade Combat Teams, since they are mounted on Stryker vehicles.  The Stryker is a modified version of  a Canadian designed Light Armored Vehicle, but a key part of the vehicle and brigade design is the integration of its networking capabilities.  And it has been quite successful in Iraq. It isn’t invulnerable to IEDs or mines, but the crew survivability is pretty good, and combination of speed, armor and firepower is pretty close to what the Army had hoped for. But even supported by the Mobile Gun System, the Stryker Brigade is a little too light to go on the offense against an armored enemy.

But the attempt to force several different types of vehicles, from tanks to artillery, to infantry carriers to share a common basis has not been successful. The challenges, from keeping weight down, to providing enough armor, to finding a powerful, but lightweight engine, are just too much to form a successful program.

With the demise of the common family of vehicles from the FCS program, the Army will have to stretch the life of its core fleet of Abrams and Bradley vehicles. They are already somewhat old, most of them having been bought in the 1980s, but with proper funding to reset/upgrade their mechanical components and continued improvement of their sensors and networking capabilities, there’s probably enough life left in them to stave off mass obsolescence. And several parts of the FCS program will be integrated into the Army in the future, such as its great emphasis on UAVs, unmanned ground sensors, and perhaps even unmanned ground vehicles.  Certainly, the demand for much greater bandwidth at the tactical level isn’t going to go away, in spite of mounting challenges there (there is only so much of the radio spectrum available). Some technologies, such as the Non-Line of Sight- Launch System are well on their way to being fielded with the Army (and the Navy’s LCS ships will use it as well).

[youtube=http://www.youtube.com/watch?v=88vqs_SC9WA]

Even more Dragon Gunnery…

We’ve talked about  the old M47 Dragon anti-tank missile system before, once or twice.  For technology that entered service in 1973, it was pretty impressive. But by the time I fired my first live Dragon in 1991, it was clearly obsolescent.

As I mentioned in an earlier post, the Dragon had a fairly short range, 1000 meters, which meant that every vehicle with a machine gun had a fair chance of zapping you if you shot at them. And merely breathing heavy could be enough to make you miss the shot. And anyone who’s running around the battlefield is pretty durn likely to be breathing heavy.

Still, in the old M-113 equipped units, it was pretty much the only anti-tank weapon in the company, so you made the best of it that you could. It made somewhat less sense in the M2 Bradley equipped units, since each Bradley has a built in 2-round TOW missile launcher. Even then, each squad had a Dragon sight as part of its equipment. There is missile stowage for spare TOW rounds onboard the Bradley, but you can swap out TOWs for Dragons on a one-for-one basis. Or you can cheat and do like we did in Desert Storm, and load the full load of TOWs and strap a Dragon to the base of the turret basket.

We managed to get through the 4 days of ground combat without having to shoot any Dragons in my company. Normally, we would have turned in excess ammo for storage until the next war. Some, like the small arms ammo, it was easier to just shoot the stuff we had uncrated than to turn it in. But missiles like the TOW are somewhat more expensive than a 5.56mm round. On the other hand, the safety regulations for shipping ammunition, usually by merchant ship, are very stringent. We had tossed all the packaging the missiles all came in. So the word came down that we were authorized to expend them. By that time, almost all my company had actually left southern Iraq and was waiting in Saudi Arabia for a flight home (which would take almost a month).  We had just enough people to move the company’s vehicles, with a couple of us as spares to drive captured Iraqi vehicles. And I was the only qualified Dragon gunner in the bunch.

As a result, after countless “dry-fires” using the simulator, I finally got to fire a live Dragon. And as a bonus, I got to fire it at a real Soviet made armored vehicle (an old MTLB). And I didn’t get to fire just one. I fired all 14 Dragons we had in the company.  By the time I was done, the MTLB looked like Swiss cheeese…

I fired one more live Dragon, a few years later in Colorado. That was fun as well, but I only got to kill a plywood target with that.

Old School Ordinance.

You know, when I can’t think of anything to write about, or more likely, just don’t feel like writing, I do what every good milblogger does. I steal stuff from John at The Castle.

[vodpod id=Groupvideo.2451966&w=425&h=350&fv=]

[vodpod id=Groupvideo.2451996&w=425&h=350&fv=]

Interestingly, with the exception of the M2 .50cal, all these weapons have passed from the inventory, but either a direct replacement or an analogous type weapon can still be found in the infantry (for instance, the 37mm and 57mm anti-tank guns are long gone, but their role is filled today by the Javelin and TOW missiles.

HEAT Rounds and Sabots redux

I don’t know why I spent all that time typing about HEAT rounds and sabots when National Geo covered pretty much all the high points in just over two minutes.

[youtube=http://www.youtube.com/watch?v=MPgdFV19XpQ]

H/T: From my position…