Electronic Warfare- grunt style

Almost as soon as electronics entered warfare, Electronic Countermeasures (ECM) began to appear. For instance, in the Battle of Port Arthur, wireless radio communications lead to jamming.

One of the most dangerous threats facing American troops in Iraq and Afghanistan has been the Improvised Explosive Device, or IED. The vast amounts of explosives available in these countries, such as artillery ammunition, or ammonium nitrate fertilizer mixed with fuel oil, has led to some very creative mines and similar devices used to attack our troops.

Early on, most IEDs were triggered via either a pressure plate or command detonated by wire.  US troops quickly learned to spot most of these.* The enemy quickly learned to use a variety of radio frequency remote detonators, ranging from simple devices like the key fob used to unlock your car door, to garage door opener, to cell phones and other systems.

The Army quickly moved to counter these radio frequency (RF) remote detonators. Unfortunately, a quick reaction capability** meant the first generation of jammers were broad band devices designed to simply overwhelm any enemy signal. That had the knock on effect of often overpowering friendly use of the RF spectrum. As the Army and Marines began to grasp that RF controlled devices would almost certainly be a part of any future battlefield, they also began to work with industry to determine exactly what they want in ECM to counter the threat, field devices that could be used at every tactical echelon, require minimum training, space, weight and power, and best defeat the enemy without interfering with our own use of the RF spectrum. It should be noted, back in my day in the 80s and 90s, electronic warfare assets were held by the Military Intelligence battalion organic to each division. Teams might be attached to brigades or lower echelons, but there simply was no organic EW or ECM equipment in the maneuver battalions or their vehicles.

Today, virtually every echelon has their own equipment, be it large to defend an installation, vehicle mounted to protect a column of vehicles, or even manpack jammers to defend dismounted patrols.

Let’s take a look at some of the ECM gear in use today, and discuss some issues with them.

First, some terminology. The Army loves acronyms, and in recent years has even taken to embedding acronyms within acronyms. The series of jammers in use today are collectively referred to as CREW, or Counter Radio-Controlled-Improvised-Explosive-Device (RCIED) Electronic Warfare.

ECM systems might be used to protect entire Forward Operating bases. FOBs are popular targets for Vehicle Borne IED (such as a truck bomb) and while most VBIEDs aren’t radio command detonated, it never hurts to cover that contingency). These semi-fixed installations are beyond the scope our discussion today.

That leaves vehicle mounted and manpack CREW systems. Not every vehicle will mount a CREW system. The range of the system is sufficient that one jammer can cover a fairly good number of vehicles.  Secondly, not every vehicle has the power and space to mount one. Further, the costs imposed on adding CREW to certain vehicles, such as M1 tanks, is prohibitive, considering their relative invulnerability to most IEDs already.  Having said that, Humvee and MRAP units are commonly well equipped with CREW devices. Probably the most common one in use is the DUKE, or ULQ-35.

[scribd id=270222353 key=key-NANQb3E5b1qHtcdwYWq4 mode=scroll]

Note that DUKE isn’t continuously transmitting, but rather spends its time listening for possible enemy signals, and then automatically jams them, often times with very sophisticated waveforms and techniques. DUKE is a wideband system, and covers virtually the entire tactically significant RF spectrum.

But roadside bombs aren’t the only threat our troops face. Particularly in Afghanistan, dismounted patrols move through areas were RCIEDs are common. Those patrols need protection as well. The standard manpack IED jammer is the Thor III.

[scribd id=270222540 key=key-y3TfQxOdQNMUWlYWXpd8 mode=scroll]

You’ll notice there’s not one, but three manpacks in a Thor III system. Three packs are needed to cover the high, medium, and low bands. Unfortunately, that greatly increases the load of mission equipment a dismounted platoon has to carry.

Two_Soldiers_operate_Thor_and_Minehound

You’ll also note that the size of the pack means that each troop carrying one has no room to carry his own personal equipment such as food, water, and extra clothing. That means their load has to be spread about the rest of the platoon, further exacerbating the load carrying problem.

The Joint IED Defeat Organization, the DoD’s counter IED office, solicited proposals for a pack that would allow a troop to carry both loads, but cancelled the contract

Given the burden the system imposes on a platoon, one wonders if any commanders have conducted an operational risk assessment and occasionally decided to leave one or two of the packs behind and cover only the most likely threat band.

As this lengthy but interesting article from 2013 notes, currently Army and Marine Corps small unit electronic warfare is focused on force protection, but that is beginning to change:

The program office for electronic warfare is fielding an array of precision jammers, including some that target the triggers for radio-controlled improvised explosive devices and act as sensors to pinpoint the trigger man’s location. These new devices also extend to squads on foot and forward operating bases the protective bubble for wheeled vehicles.

“This is a significant shift from defense — protect your convoy, let’s just get through the day — to go on the offensive for enemy command and control,” said Mike Ryan, electronic warfare program manager at PEO IEW&S.

The next version of the CREW Duke for vehicles merges electronic warfare and cyberwarfare by conducting “protocol-based attacks,” said Ryan, “where you actually get into the system and displace ones and zeroes to break that communication chain between the trigger and the [radio-controlled] IED receiving those ones and zeroes.” This is part of a technology insertion over the next few years.

Basically, in addition to defeating the detonation of one IED, the technology will begin to defeat the enemy’s network. In addition to simply jamming enemy signals, distributed CREW systems will conduct ongoing Signal Intelligence (SIGINT) collection and Traffic Analysis collection. Each system will either record or retransmit its collection for analysis at higher headquarters, which can use this information to discern the enemy Order of Battle, chain of command, and potentially its capabilities and intentions. One suspects future systems will also be linked to an embedded GPS system capability to provide real time or near real time targeting capability.

We personally suspect that since future generations of tactical radios for friendly voice and data use will use software defined waveforms, they will also embed a jamming and EW/SIGINT capability, meaning that each friendly radio will also serve a CREW mission, thus reducing the number of devices needed at the tactical level, and reducing the physical and power burden on a given unit.

 

*Most. Not all. But a lot of training went into spotting possible IEDs and tell-tale signs of wires and pressure plates.

** Quick Reaction Capability or QRC means not that it acts quickly on the battlefield, but rather that the government was able to quickly contract with industry to field a capability to the forces. The solution is almost always imperfect, but it is at least there.